Extent of self-averaging in the statistical mechanics of finite random copolymers

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 353203
(http://iopscience.iop.org/0305-4470/35/14/304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 02/06/2010 at 10:00

Please note that terms and conditions apply.

Extent of self-averaging in the statistical mechanics of finite random copolymers

E W James and S G Whittington
Department of Chemistry, University of Toronto, Toronto, Canada M5S 3H6

Received 25 February 2002
Published 29 March 2002
Online at stacks.iop.org/JPhysA/35/3203

Abstract

We investigate the extent of thermodynamic self-averaging in a coloured selfavoiding walk model of finite random copolymer adsorption. We derive a bound on the extent of self-averaging as a function of the length of the self-avoiding walk.

PACS numbers: 05.40.Fb, 05.70.Ce, 82.35.Jk

1. Introduction

Quenched random systems such as dilute magnets and copolymers have been studied since the pioneering work of Brout (1959). An important question which arises is the extent to which properties of the system depend on the particular realization of the quenched random variables. For instance, in the case of random copolymers the sequence of monomers is determined by some random process but this sequence is then fixed in that molecule. To what extent do the properties of the molecule depend on the particular sequence of comonomers? If the polymer has n monomers, then the system is said to be thermodynamically self-averaging if the free energy is equal to the quenched average free energy for almost all comonomer sequences, in the infinite- n limit.

Thermodynamic self-averaging has been proved for a number of model systems including a random magnet with short-range (van Hemmen and Palmer 1982) and long-range interactions (van Enter and van Hemmen 1983), self-avoiding walk models of random copolymer adsorption (Orlandini et al 1999) and localization (Martin et al 2000), a lattice tree model of branched random copolymer adsorption (You and Janse van Rensburg 2000) and some simplified models of randomly self-interacting copolymers (Orlandini et al 2000, Janse van Rensburg et al 2001). However, it is known that correlation functions are not self-averaging in some random spin problems (Derrida and Hilhorst 1981, Sourlas 1987), so self-averaging is not a trivial property.

The methods which have been used to prove thermodynamic self-averaging say little about the extent of self-averaging for finite systems. For spin systems van Hemmen and Palmer (1982) gave a large deviation result for finite systems and, more recently, self-averaging in finite random copolymers has been investigated numerically by Chuang et al (2001) and by

Naidenov and Nechaev (2001). They examined the dependence of thermodynamic functions on the comonomer sequence, as a function of system size, and investigated the extent of selfaveraging for small n. The purpose of this paper is to supply some rigorous results about the question. We shall work in the context of a self-avoiding walk model of random copolymer adsorption.

2. Definitions and statement of results

We shall focus on self-avoiding walks on the d-dimensional hypercubic lattice, \mathbb{Z}^{d} and write (x, y, \ldots, z) for the coordinates of a vertex of \mathbb{Z}^{d}. Let c_{n} be the number of distinct n-edge self-avoiding walks on \mathbb{Z}^{d}, starting at the origin. The connective constant κ_{d} of \mathbb{Z}^{d} is given by

$$
\begin{equation*}
\kappa_{d}=\lim _{n \rightarrow \infty} n^{-1} \log c_{n} \tag{2.1}
\end{equation*}
$$

(Hammersley and Morton 1954), and it is known that $c_{n}=\mathrm{e}^{\kappa_{d} n+\mathrm{O}(\sqrt{n})}$ (Hammersley and Welsh 1962). We define a positive walk to be a self-avoiding walk with n edges on \mathbb{Z}^{d}, which starts at the origin and is confined to the half-space $z \geqslant 0$, but we shall often consider translates of a positive walk in the $z=0$ plane. We write $\left(x_{i}, y_{i}, \ldots, z_{i}\right)$ for the coordinates of the i th vertex, $i=0,1, \ldots, n$, so that $z_{0}=0$ and $z_{i} \geqslant 0$ for all $i>0$. The zeroth vertex is uncoloured and the remaining vertices of the walk are coloured independently and uniformly by a random variable belonging to a probability space Y. A sequence $\chi=\chi_{1}, \chi_{2}, \ldots, \chi_{n}$ of n colours can be sampled from the product space $X=Y \times Y \times \cdots \times Y$. In fact we shall consider colourings by only two colours A and B, but this can easily be generalized to cases with any finite number of colours.

Let $c_{n}^{+}(v \mid \chi)$ be the number of positive walks with n edges, with vertices $1,2, \ldots, n$ coloured $\chi_{1}, \chi_{2}, \ldots, \chi_{n} \equiv \chi$, having v vertices coloured A in the surface $z=0$. We define the partition function

$$
\begin{equation*}
Z_{n}^{+}(\alpha \mid \chi)=\sum_{v} c_{n}^{+}(v \mid \chi) \mathrm{e}^{\alpha v} \tag{2.2}
\end{equation*}
$$

and the reduced free energy

$$
\begin{equation*}
\kappa_{n}(\alpha \mid \chi)=n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \tag{2.3}
\end{equation*}
$$

We define an n-edge loop to be a positive walk with n edges which satisfies the inequalities

$$
\begin{equation*}
0=x_{0}<x_{i} \leqslant x_{n}, \quad 0<i \leqslant n, \tag{2.4}
\end{equation*}
$$

and the condition

$$
\begin{equation*}
0=z_{0}=z_{n} \leqslant z_{i}, \quad 0 \leqslant i \leqslant n . \tag{2.5}
\end{equation*}
$$

We write $l_{n}(v \mid \chi)$ for the number of loops with n edges and colouring χ, having v vertices coloured A in the plane $z=0$. Define the partition function

$$
\begin{equation*}
L_{n}(\alpha \mid \chi)=\sum_{v} l_{n}(v \mid \chi) \mathrm{e}^{\alpha v} \tag{2.6}
\end{equation*}
$$

Let $c_{n}^{h}(v \mid \chi)$ be the number of n-edge self-avoiding walks, confined to the half-space $z \geqslant 0$, having initial vertex with coordinates $(0,0, \ldots, 0, h)$ (i.e. with $z_{0}=h$), having colouring χ and having v vertices coloured A in $z=0$. Notice that $c_{n}^{0}(v \mid \chi) \equiv c_{n}^{+}(v \mid \chi)$. Define the corresponding partition function

$$
\begin{equation*}
Z_{n}^{h}(\alpha \mid \chi)=\sum_{v} c_{n}^{h}(v \mid \chi) \mathrm{e}^{\alpha v} \tag{2.7}
\end{equation*}
$$

and let

$$
\begin{equation*}
Z_{n}^{*}(\alpha \mid \chi)=\max _{h} Z_{n}^{h}(\alpha \mid \chi) \tag{2.8}
\end{equation*}
$$

Orlandini et al (1999) proved the existence of the quenched average free energy

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle\kappa_{n}(\alpha \mid \chi)\right\rangle \equiv \bar{\kappa}(\alpha), \tag{2.9}
\end{equation*}
$$

where the angular brackets denote an average over colourings χ, and that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log L_{n}(\alpha \mid \chi)\right\rangle=\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle=\bar{\kappa}(\alpha) \tag{2.10}
\end{equation*}
$$

Our main result is a bound on the width of the distribution of the free energy $\kappa_{n}(\alpha \mid \chi)$. We state this in the following theorem.

Theorem 1. For any $\alpha<\infty$ there exists $K=K(\alpha, d)<\infty$, such that for any $\epsilon>0$, the following inequality holds with probability exceeding $(1-2 K /\lfloor\sqrt{n}\rfloor)$:

$$
\begin{equation*}
\left|\kappa_{n}(\alpha \mid \chi)-\left\langle\kappa_{n}(\alpha \mid \chi)\right\rangle\right| \leqslant \mathrm{O}\left(n^{-\frac{1}{4}+\epsilon}\right) \tag{2.11}
\end{equation*}
$$

The proof is by a series of lemmas, and is given in the next section.

3. Proof of results

The general approach is to divide an n-edge walk into a set of p subwalks each of length m and derive upper and lower bounds on $\log Z_{n}^{+}(\alpha \mid \chi)$ in terms of the averages of $\log L_{m}(\alpha \mid \chi)$ and $\log Z_{m}^{*}(\alpha \mid \chi)$, with correction terms coming from the distributions of $\log L_{m}(\alpha \mid \chi)$ and $\log Z_{m}^{*}(\alpha \mid \chi)$. The main tool is an application of Chebyshev's inequality (see for instance Moran 1968). The remaining problem is to relate the averages $\left\langle\log L_{m}(\alpha \mid \chi)\right\rangle$ and $\left\langle\log Z_{m}^{*}(\alpha \mid \chi)\right\rangle$ to $\left\langle\log Z_{m}^{+}(\alpha \mid \chi)\right\rangle$. We first prove several lemmas which address the second problem. The first lemma gives an upper bound on the quenched average free energy for loops.
Lemma 1. For all $\alpha<\infty$ the quenched average free energy for loops is bounded above by the limiting quenched average free energy. I.e. for any $n>0$,

$$
\begin{equation*}
\left\langle n^{-1} \log L_{n}(\alpha \mid \chi)\right\rangle \leqslant \bar{\kappa}(\alpha) \tag{3.1}
\end{equation*}
$$

Proof. Fix $\alpha<\infty$. Two loops can be concatenated to form a loop by identifying the last vertex of one loop with the first vertex of the other loop. Since the first vertex of a loop is not coloured, the common vertex inherits the colour of the last vertex of the first loop. This gives the inequality

$$
\begin{equation*}
L_{m+n}(\alpha \mid \chi) \geqslant L_{m}\left(\alpha \mid \chi_{1}\right) L_{n}\left(\alpha \mid \chi_{2}\right) \tag{3.2}
\end{equation*}
$$

where the colouring χ is the concatenation of the two colourings χ_{1} and χ_{2}. Taking logarithms and averaging over the colourings gives

$$
\begin{equation*}
\left\langle\log L_{m+n}(\alpha \mid \chi)\right\rangle \geqslant\left\langle\log L_{m}\left(\alpha \mid \chi_{1}\right)\right\rangle+\left\langle\log L_{n}\left(\alpha \mid \chi_{2}\right)\right\rangle \tag{3.3}
\end{equation*}
$$

so that $\left\langle\log L_{n}(\alpha \mid \chi)\right\rangle$ is a superadditive function. Since

$$
\begin{equation*}
\left\langle n^{-1} \log L_{n}(\alpha \mid \chi)\right\rangle \leqslant \max [\log (2 d), \log (2 d)+\alpha]<\infty \tag{3.4}
\end{equation*}
$$

we have (Hille 1948)

$$
\begin{equation*}
\sup _{n>0}\left\langle n^{-1} \log L_{n}(\alpha \mid \chi)\right\rangle=\lim _{n \rightarrow \infty}\left\langle n^{-1} \log L_{n}(\alpha \mid \chi)\right\rangle \tag{3.5}
\end{equation*}
$$

and this limit is known to be equal to $\bar{\kappa}(\alpha)$ (Orlandini et al 1999).

Lemma 2. For all $\alpha<\infty$ and for any $n>0$,

$$
\begin{equation*}
\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle \geqslant \bar{\kappa}(\alpha) . \tag{3.6}
\end{equation*}
$$

Proof. Fix $\alpha<\infty$. By cutting walks with $m+n$ edges into two subwalks with m and n edges respectively we obtain the inequality

$$
\begin{equation*}
Z_{m+n}^{*}(\alpha \mid \chi) \leqslant Z_{m}^{*}\left(\alpha \mid \chi_{1}\right) Z_{n}^{*}\left(\alpha \mid \chi_{2}\right) \tag{3.7}
\end{equation*}
$$

where the colourings χ_{1} and χ_{2} of the two subwalks are determined by the colouring χ. Taking logarithms and averaging over χ shows that $\left\langle\log Z_{n}^{*}(\alpha \mid \chi)\right\rangle$ is a subadditive function. Since

$$
\begin{equation*}
\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle \geqslant \frac{\log d}{2} \tag{3.8}
\end{equation*}
$$

for $n \geqslant 2$, it follows (Hille 1948) that

$$
\begin{equation*}
\inf _{n>0}\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle=\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle \tag{3.9}
\end{equation*}
$$

and the result then follows since $\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle=\bar{\kappa}(\alpha)$ (Orlandini et al 1999).
The next lemma is essentially a sharpened version of a result due to Orlandini et al (1999) and uses a construction similar to theirs.

Lemma 3. For all $\alpha<0$

$$
\begin{equation*}
Z_{n}^{*}(\alpha \mid \chi) \leqslant c_{n} \tag{3.10}
\end{equation*}
$$

and for $0 \leqslant \alpha<\infty$

$$
\begin{equation*}
Z_{n}^{*}(\alpha \mid \chi) \leqslant L_{n+2 k}\left(\alpha \mid \chi^{\prime}\right) \mathrm{e}^{\mathrm{O}(\sqrt{n})} \tag{3.11}
\end{equation*}
$$

for some colouring χ^{\prime} which is an extension of χ, and for some k which is independent of n, α and the colouring χ.

Proof. If $\alpha<0$ the interaction with the surface is repulsive, and every walk contributing to $Z_{n}^{h}(\alpha \mid \chi)$ is a self-avoiding walk so that $Z_{n}^{*}(\alpha \mid \chi) \leqslant c_{n}$. Now suppose that $\alpha \geqslant 0$. Consider a walk confined to the half-space $z \geqslant 0$, with at least one vertex in $z=0$. The strategy will be to operate on both ends of the walk to convert the walk into a loop.

First, treat the case when at least one of z_{n} or z_{0} is zero. For each of these, x-unfold the walk and attach to the end or beginning of the resulting walk a new four-edge walk which lies in the plane $z=0$, and is oriented in the x-direction in such a manner that the walk remains x-unfolded. Thus each end of the original walk lying in the plane $z=0$ contributes an additional four edges and four vertices in the plane $z=0$.

Second, we treat any end of the walk that does not lie in $z=0$. It suffices to describe the construction for one end of the walk, since the procedure may then be repeated mutatis mutandis, at the other end, as necessary, to form the loop. We suppose that $z_{n}>0$. Let m be the last vertex in the plane $z=0$. Then vertex $m-1$ will also be in $z=0$. This is true because either end of the walk lying in $z=0$ has already been treated, above. Disconnect the walk into three subwalks, ω_{1} from vertex 0 to vertex $m-1, \omega_{2}$ being the single edge (in $z=0$) from vertex $m-1$ to vertex m, and ω_{3} from vertex m to vertex n. Unfold ω_{1} in the x-direction to form a walk ω_{4} with $m-1$ edges so that $x_{m-1} \geqslant x_{i}$ for all $i \leqslant m-1$. Reorient the single edge ω_{2} to form an edge $\tilde{\omega}_{2}$ in the positive x-direction, lying in the $z=0$ plane. Unfold ω_{3} in the x-direction to form ω_{5} with $x_{m} \leqslant x_{j} \leqslant x_{n}$ for all $m \leqslant j \leqslant n$. Unfold ω_{5} in the z-direction to form ω_{6} with $z_{n} \geqslant z_{j} \geqslant z_{m}=0$ for all $m \leqslant j \leqslant n$. Define $z^{*}=1+z_{n} / 2$ if z_{n} is even, and $z^{*}=\left(1+z_{n}\right) / 2$ if z_{n} is odd. Let r be the last vertex in ω_{6} in the plane $z=z^{*}$. Disconnect ω_{6} at vertex r to form two walks, ω_{7} from vertex m to vertex r and ω_{8} from vertex r to vertex n.

Note that $\omega_{8}=\emptyset$ if and only if $z_{n} \in\{1,2\}$, in which case $r=n$. This does not affect the proof. Unfold ω_{7} in the x-direction so that $x_{r} \geqslant x_{j} \geqslant x_{m}, m \leqslant j \leqslant r$, to form ω_{9}. Unfold ω_{8} in the x-direction so that $x_{r} \leqslant x_{j} \leqslant x_{n}, r \leqslant j \leqslant n$, and then reflect this unfolded walk in the plane $z=z^{*}$ to form ω_{10}. We now reconnect these subwalks in the following order: $\omega_{4}, \tilde{\omega_{2}}$, ω_{9}, a single edge in the positive x-direction at height $z=z^{*}$, and finally ω_{10} (empty or not). The z-coordinate of the final vertex of the resulting new walk is now equal to either 1 or 2 . Now add one or two edges in the negative z-direction so that the final vertex is in the plane $z=0$, and then add two or one edges in the positive x-direction. The total number of edges which has been added is four, and the total number of new vertices in the plane $z=0$ is either three or two.

Once both ends of the walk have been treated in the manner and order described above, the resulting object is a loop with eight additional edges and at most eight extra vertices in $z=0$. Now, relabel the vertices so that the relabelling χ^{\prime} of the loop is any fixed labelling of the four vertices (numbered 1 to 4), followed by the labelling χ of the vertices numbered 5 to $n+4$, followed by any fixed labelling of vertices $n+5$ to $n+8$. We note that the unfolding operations only contribute a factor of $\mathrm{e}^{\mathrm{O}(\sqrt{n})}$. Also, because of the way χ has been shifted to obtain χ^{\prime}, we observe that the original energy contributions remain unchanged. Thus, since α is fixed and no more than eight new vertices may affect the energy contributions, these changes in energy can be incorporated into the $\mathrm{e}^{\mathrm{O}(\sqrt{n})}$ term. If the original walk has no vertices in $z=0$ we have a contribution from self-avoiding walks, no bigger than c_{n}. But it follows from a result of Tesi et al (1996) that $c_{n} \leqslant L_{n}(\alpha \mid \chi) \mathrm{e}^{\mathrm{O}(\sqrt{n})} \leqslant L_{n+8}\left(\alpha \mid \chi^{\prime}\right) \mathrm{e}^{\mathrm{O}(\sqrt{n})}$ so that

$$
\begin{equation*}
Z_{n}^{*}(\alpha \mid \chi) \leqslant c_{n}+L_{n+8}\left(\alpha \mid \chi^{\prime}\right) \mathrm{e}^{\mathrm{O}(\sqrt{n})} \leqslant L_{n+8}\left(\alpha \mid \chi^{\prime}\right) \mathrm{e}^{\mathrm{O}(\sqrt{n})} \tag{3.12}
\end{equation*}
$$

This completes the proof, with $k=4$.
Lemma 4. For all $\alpha<\infty$

$$
\begin{equation*}
\left\langle m^{-1} \log Z_{m}^{*}(\alpha \mid \chi)\right\rangle \leqslant \bar{\kappa}(\alpha)+\mathrm{O}\left(m^{-1 / 2}\right) . \tag{3.13}
\end{equation*}
$$

Proof. First consider $\alpha \geqslant 0$. Then by lemma 3 we have

$$
\begin{equation*}
Z_{m}^{*}(\alpha \mid \chi) \leqslant \mathrm{e}^{\mathrm{O}(\sqrt{m})} L_{m+2 k}\left(\alpha \mid \chi^{\prime}\right) \tag{3.14}
\end{equation*}
$$

Taking logarithms, dividing by m and averaging over colourings gives

$$
\begin{align*}
\left\langle m^{-1} \log Z_{m}^{*}(\alpha \mid \chi)\right\rangle & \leqslant \frac{m+2 k}{m}\left\langle(m+2 k)^{-1} \log L_{m+2 k}\left(\alpha \mid \chi^{\prime}\right)\right\rangle+\mathrm{O}\left(m^{-1 / 2}\right) \\
& \leqslant \bar{\kappa}(\alpha)+\mathrm{O}\left(m^{-1 / 2}\right) \tag{3.15}
\end{align*}
$$

where we have made use of the fact that $\left\langle m^{-1} \log L_{m}(\alpha \mid \chi)\right\rangle$ is bounded above by $\bar{\kappa}(\alpha)$ (lemma 1). For $\alpha<0, Z_{m}^{*}(\alpha \mid \chi) \leqslant c_{m}$, by lemma 3, and $c_{m}=\mathrm{e}^{\kappa_{d} m+\mathrm{O}(\sqrt{m})}$ (Hammersley and Welsh 1962) so that

$$
\begin{equation*}
\left\langle m^{-1} \log Z_{m}^{*}(\alpha \mid \chi)\right\rangle \leqslant \kappa_{d}+\mathrm{O}\left(m^{-1 / 2}\right)=\bar{\kappa}(\alpha)+\mathrm{O}\left(m^{-1 / 2}\right) \tag{3.16}
\end{equation*}
$$

since $\bar{\kappa}(\alpha)=\bar{\kappa}(0)=\kappa_{d}$ for all $\alpha \leqslant 0$ (Orlandini et al 1999).
The next lemma gives a lower bound on the quenched average free energy for loops.
Lemma 5. For all $\alpha<\infty$

$$
\begin{equation*}
\left\langle m^{-1} \log L_{m}(\alpha \mid \chi)\right\rangle \geqslant \bar{\kappa}(\alpha)-\mathrm{O}\left(m^{-1 / 2}\right) \tag{3.17}
\end{equation*}
$$

Proof. For $\alpha \leqslant 0$ the result is immediate since $L_{m}(\alpha \mid \chi)=c_{m} \mathrm{e}^{\mathrm{O}(\sqrt{m})}$ (Tesi et al 1996) and $\bar{\kappa}(\alpha)=\kappa_{d}$ (Orlandini et al 1999). For $\alpha \geqslant 0$, using lemma 3,

$$
\begin{equation*}
L_{m}(\alpha \mid \chi) \geqslant Z_{m-2 k}^{*}\left(\alpha \mid \chi^{\prime}\right) \mathrm{e}^{\mathrm{O}(\sqrt{m})} \tag{3.18}
\end{equation*}
$$

where χ^{\prime} is a suitable truncation of the colouring χ. Taking logarithms, dividing by m, averaging over the colourings and using lemma 2 gives the required result.

We now turn to the basic ingredient in the proof of theorem 1, which is an application of Chebyshev's inequality to upper and lower bounds on $n^{-1} \log Z_{n}^{+}(\alpha \mid \chi)$.
Lemma 6. Suppose that $X_{1}, X_{2}, X_{3}, \ldots$, is a sequence of independent, identically distributed random variables, with mean zero, such that $\forall j\left|X_{j}\right| \leqslant \Lambda$, for some fixed constant $\Lambda<\infty$. Form the pth sum $S_{p}=\sum_{j=1}^{p} X_{j}$. Then there is a constant $K=K(\Lambda)$ depending only on Λ, such that

$$
\begin{equation*}
\operatorname{Prob}\left\{\left|\frac{S_{p}}{p}\right| \geqslant \frac{\log p}{\sqrt{p}}\right\} \leqslant \frac{K}{p} . \tag{3.19}
\end{equation*}
$$

Proof. Let $a_{p}=\sqrt{p} \log p$. Then, we wish to find an upper bound on the probability $\operatorname{Prob}\left\{\left|S_{p}\right| \geqslant a_{p}\right\}$. To do this, we first consider the following:
$\operatorname{Prob}\left\{S_{p} \geqslant a_{p}\right\}=\operatorname{Prob}\left\{\sqrt{\mathrm{e}^{S_{p} / \sqrt{p}}} \geqslant \sqrt{\mathrm{e}^{a_{p} / \sqrt{p}}}\right\} \leqslant \frac{\left\langle\mathrm{e}^{S_{p} / \sqrt{p}}\right\rangle}{\mathrm{e}^{a_{p} / \sqrt{p}}}=\frac{\left\langle\mathrm{e}^{S_{p} / \sqrt{p}}\right\rangle}{p}$,
where the upper bound has been obtained through an application of Chebyshev's inequality. By assumption, there is a $\Lambda<\infty$, so that $\left|X_{j}\right| \leqslant \Lambda$, for each j. Using this, and the fact that X_{1}, X_{2}, \ldots, are i.i.d. with $\left\langle X_{j}\right\rangle=0$, we obtain the following upper bound:

$$
\begin{align*}
\left\langle\mathrm{e}^{S_{p} / \sqrt{p}}\right\rangle & =\left\langle\mathrm{e}^{(1 / \sqrt{p}) \sum_{j=1}^{p} X_{j}}\right\rangle=\left\langle\prod_{j=1}^{p} \mathrm{e}^{X_{j} / \sqrt{p}}\right\rangle=\left\langle\mathrm{e}^{X_{1} / \sqrt{p}}\right\rangle^{p} \\
& =\left(1+\frac{\left\langle X_{1}\right\rangle}{p^{1 / 2}}+\frac{\left\langle X_{1}{ }^{2}\right\rangle}{2!p}+\frac{\left\langle X_{1}{ }^{3}\right\rangle}{3!p^{3 / 2}}+\frac{\left\langle X_{1}{ }^{4}\right\rangle}{4!p^{2}}+\cdots\right)^{p} \\
& =\left(1+\frac{1}{p}\left(\frac{\left\langle X_{1}{ }^{2}\right\rangle}{2!}+\frac{\left\langle X_{1}{ }^{3}\right\rangle}{3!p^{1 / 2}}+\frac{\left\langle X_{1}{ }^{4}\right\rangle}{4!p^{1}}+\cdots\right)\right)^{p} \\
& \leqslant\left(1+\frac{1}{p}\left(\frac{\Lambda^{2}}{2!}+\frac{\Lambda^{3}}{3!}+\frac{\Lambda^{4}}{4!}+\cdots\right)\right)^{p} \\
& \leqslant\left(1+\frac{B}{p}\right)^{p} \leqslant \mathrm{e}^{B}, \tag{3.21}
\end{align*}
$$

where $B=\mathrm{e}^{\Lambda}$ will do the job. By exactly the same argument, we obtain

$$
\begin{align*}
\operatorname{Prob}\left\{S_{p} \leqslant-a_{p}\right\} & =\operatorname{Prob}\left\{-S_{p} \geqslant a_{p}\right\} \\
& =\frac{\left\langle\mathrm{e}^{-S_{p} / \sqrt{p}}\right\rangle}{p} \leqslant \frac{\mathrm{e}^{B}}{p} . \tag{3.22}
\end{align*}
$$

Combining the results of equations (3.21) and (3.22), we have

$$
\begin{align*}
\operatorname{Prob}\left\{\left|S_{p}\right| \geqslant a_{p}\right\} & =\operatorname{Prob}\left\{S_{p} \geqslant a_{p} \text { or } S_{p} \leqslant-a_{p}\right\} \\
& =\operatorname{Prob}\left\{S_{p} \geqslant a_{p}\right\}+\operatorname{Prob}\left\{S_{p} \leqslant-a_{p}\right\} \\
& \leqslant \frac{2 \mathrm{e}^{B}}{p} \tag{3.23}
\end{align*}
$$

and the lemma is proved, with $K=2 \mathrm{e}^{B}$, where $B=\mathrm{e}^{\Lambda}$.

Lemma 7. Fix $m \geqslant 4$ and write $n=m p+q, 0 \leqslant q<m$. For all $\alpha<\infty$ there is a constant $K=K(\alpha, d)<\infty$, depending only on α and the dimension d, such that the following inequality holds with probability exceeding $1-\frac{K}{p}$:
$n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \geqslant \frac{1}{1+q / m p}\left[\left\langle m^{-1} \log L_{m}(\alpha \mid \chi)\right\rangle-\frac{\log p}{\sqrt{p}}\right]+\min [0,3 \alpha / n]$.

Proof. Fix $m \geqslant 4$ and write $n=m p+q, 0 \leqslant q<m$. Fix $\alpha<\infty$. By concatenating p loops each of length m together with an additional loop of length q we have the lower bound

$$
\begin{equation*}
Z_{n}^{+}(\alpha \mid \chi) \geqslant\left[\prod_{j=1}^{p} L_{m}\left(\alpha \mid \chi_{j}\right)\right] \times L_{q}\left(\alpha \mid \chi_{p+1}\right) \tag{3.25}
\end{equation*}
$$

where we define $L_{0} \equiv 1$ and where the colourings $\chi_{1}, \ldots, \chi_{p+1}$ of the $p+1$ loops are determined by the colouring χ. Taking logarithms, dividing by n and using the fact that $L_{q}(\alpha \mid \chi) \geqslant \min \left[1, \mathrm{e}^{3 \alpha}\right]$, we have
$n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \geqslant\left(\frac{m p}{m p+q}\right) p^{-1} \sum_{j=1}^{p} m^{-1} \log L_{m}\left(\alpha \mid \chi_{j}\right)+\min [0,3 \alpha / n]$.
Choosing the i.i.d., mean zero, random variables X_{1}, X_{2}, \ldots, of lemma 6 to be defined by

$$
\begin{equation*}
X_{j}=m^{-1} \log L_{m}\left(\alpha \mid \chi_{j}\right)-\left\langle m^{-1} \log L_{m}\left(\alpha \mid \chi_{j}\right)\right\rangle, \tag{3.27}
\end{equation*}
$$

we note that (for m big enough) $\left|X_{j}\right| \leqslant \Lambda=2 \max [\log 2 d, \alpha+\log 2 d]$. Therefore, setting $K=2 \mathrm{e}^{B}$, with $B=\mathrm{e}^{\Lambda}$, lemma 6 yields

$$
\begin{equation*}
p^{-1} \sum_{j=1}^{p} m^{-1} \log L_{m}\left(\alpha \mid \chi_{j}\right) \geqslant\left\langle m^{-1} \log L_{m}(\alpha \mid \chi)\right\rangle-\frac{\log p}{\sqrt{p}}, \tag{3.28}
\end{equation*}
$$

with probability exceeding $1-\frac{K}{p}$, and the lemma then follows.
Lemma 8. Fix $m \geqslant 4$ and write $n=m p+q$ with $0 \leqslant q<m$. For all $\alpha<\infty$, there is a constant $K=K(\alpha, d)<\infty$, depending only on α and dimension d, such that the following inequality holds with probability exceeding $1-\frac{K}{p}$:
$n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \leqslant\left\langle m^{-1} \log Z_{m}^{*}(\alpha \mid \chi)\right\rangle+\frac{\log p}{\sqrt{p}}+\frac{m}{n} \max [\log 2 d, \alpha+\log 2 d]$.
Proof. By dividing a walk of length n into p subwalks of length m and a final subwalk of length $q, 0 \leqslant q<m$, we have the inequality

$$
\begin{equation*}
Z_{n}^{+}(\alpha \mid \chi) \leqslant\left[\prod_{j=1}^{p} Z_{m}^{*}\left(\alpha \mid \chi_{j}\right)\right] \times Z_{q}^{*}\left(\alpha \mid \chi_{p+1}\right) \tag{3.30}
\end{equation*}
$$

where we define $Z_{0}^{*} \equiv 1$ and where the colourings $\chi_{1}, \ldots, \chi_{p+1}$ of the $p+1$ subwalks are determined by the colouring χ. Taking logarithms, dividing by n and using the fact that $Z_{q}^{*}\left(\alpha \mid \chi_{p+1}\right) \leqslant \max \left[(2 d)^{m},(2 d)^{m} \mathrm{e}^{\alpha m}\right]$, we obtain the bound
$n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \leqslant p^{-1} \sum_{j=1}^{p} m^{-1} \log Z_{m}^{*}\left(\alpha \mid \chi_{j}\right)+m n^{-1} \max [\log 2 d, \alpha+\log 2 d]$.
Again, we use lemma 6, this time choosing the i.i.d., mean zero random variables X_{1}, X_{2}, \ldots to be defined by

$$
\begin{equation*}
X_{j}=m^{-1} \log Z_{m}^{*}(\alpha \mid \chi)-\left\langle m^{-1} \log Z_{m}^{*}(\alpha \mid \chi)\right\rangle, \tag{3.32}
\end{equation*}
$$

and we note that $\left|X_{j}\right| \leqslant \Lambda=2 \max [\log 2 d, \alpha+\log 2 d]$. Therefore, setting $K=2 \mathrm{e}^{B}$, with $B=\mathrm{e}^{\Lambda}$, lemma 6 yields
$n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \leqslant\left\langle m^{-1} \log Z_{m}^{*}(\alpha \mid \chi)\right\rangle+(m / n) \max [\log 2 d, \alpha+\log 2 d]+\frac{\log p}{\sqrt{p}}$
with probability exceeding $1-K / p$, which completes the proof.
Lemma 9. Fix $\alpha<\infty$. Then there is a constant $K=K(\alpha, d)<\infty$, such that $\forall \epsilon>0$ the following inequality holds with probability exceeding $(1-2 K /\lfloor\sqrt{n}\rfloor)$:

$$
\begin{equation*}
\left|n^{-1} \log Z_{n}^{+}(\alpha \mid \chi)-\bar{\kappa}(\alpha)\right| \leqslant \mathrm{O}\left(n^{-\frac{1}{4}+\epsilon}\right) \tag{3.34}
\end{equation*}
$$

Proof. From lemmas 5 and 7, for sufficiently large m there is a constant $K=K(\alpha, d)<\infty$, such that for any $\epsilon>0$ the following inequality holds with probability exceeding $1-K / p$:

$$
\begin{align*}
n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) & \geqslant \frac{1}{1+(q / m p)}\left[\bar{\kappa}(\alpha)-\mathrm{O}\left(m^{-1 / 2}\right)-\frac{\log p}{\sqrt{p}}\right]+\min [0,3 \alpha / n] \\
& =\left(1-\mathrm{O}\left(p^{-1}\right)\right)\left[\bar{\kappa}(\alpha)-\mathrm{O}\left(m^{-1 / 2}\right)-\mathrm{O}\left(p^{-\frac{1}{2}+2 \epsilon}\right)\right]+\mathrm{O}\left(p^{-1}\right) \\
& =\bar{\kappa}(\alpha)-\mathrm{O}\left(m^{-1 / 2}\right)-\mathrm{O}\left(p^{-\frac{1}{2}+2 \epsilon}\right) \tag{3.35}
\end{align*}
$$

This is most effective when we let $p \sim m \sim \sqrt{n}$. We therefore take $m=\lfloor\sqrt{n}\rfloor$, so that $p \geqslant\lfloor\sqrt{n}\rfloor$ and we have the following inequality, with probability exceeding $(1-K /\lfloor\sqrt{n}\rfloor)$:

$$
\begin{equation*}
n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \geqslant \bar{\kappa}(\alpha)-\mathrm{O}\left(n^{-\frac{1}{4}+\epsilon}\right) \tag{3.36}
\end{equation*}
$$

Combining lemmas 4 and 8 yields, for the same K, the following inequality, with probability exceeding $(1-K /\lfloor\sqrt{n}\rfloor)$:

$$
\begin{equation*}
n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \leqslant \bar{\kappa}(\alpha)+\mathrm{O}\left(n^{-\frac{1}{4}+\epsilon}\right) \tag{3.37}
\end{equation*}
$$

The lemma is proved by combining equations (3.36) and (3.37).
Finally we return to theorem 1. Because a loop is a positive walk, and a positive walk is a *-walk, it is not difficult to show that

$$
\begin{equation*}
\left\langle n^{-1} \log L_{n}(\alpha \mid \chi)\right\rangle \leqslant\left\langle n^{-1} \log Z_{n}^{+}(\alpha \mid \chi)\right\rangle \leqslant\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle . \tag{3.38}
\end{equation*}
$$

In addition, lemmas 1 and 5 yield $\left\langle n^{-1} \log L_{n}(\alpha \mid \chi)\right\rangle=\bar{\kappa}(\alpha)-\mathrm{O}\left(n^{-1 / 2}\right)$, and lemmas 2 and 4 yield $\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle=\bar{\kappa}(\alpha)+\mathrm{O}\left(n^{-1 / 2}\right)$. Combining these last two equations with (3.38) gives

$$
\begin{equation*}
\bar{\kappa}(\alpha)-\mathrm{O}\left(n^{-1 / 2}\right) \leqslant\left\langle n^{-1} \log Z_{n}^{+}(\alpha \mid \chi)\right\rangle \leqslant \bar{\kappa}(\alpha)+\mathrm{O}\left(n^{-1 / 2}\right) \tag{3.39}
\end{equation*}
$$

Theorem 1 follows from an application of the triangle inequality, using equation (3.34) of lemma 9 , and equation (3.39).

4. Discussion

We have considered the extent of thermodynamic self-averaging in an n-edge self-avoiding walk model of random copolymer adsorption. Our main result (theorem 1) is that the free energy of the system with a randomly chosen colouring of the vertices differs from its expectation over colourings by no more than a term $\mathrm{O}\left(n^{-1 / 4+\epsilon}\right)$ with high probability. In addition we showed (lemma 9) that the free energy with n edges and a randomly chosen colourings differs from the limiting quenched average free energy by no more than $\mathrm{O}\left(n^{-1 / 4+\epsilon}\right)$ with high probability. The reason that these two error terms are of the same order is that the
quenched average free energy converges to the limiting quenched average free energy even more rapidly, in fact at least as rapidly as $\mathrm{O}\left(n^{-1 / 2}\right)$.

These results are for large values of n but one might ask, from the physical point of view, how large does n have to be? In order for (3.24) and (3.29) to be useful, p must be large compared with K, and the bound which we give on K, i.e. $K<2 \mathrm{e}^{\mathrm{e}^{\wedge}}$ is very weak. With a little more work this can be improved to $K<2 \mathrm{e}^{\Lambda^{2}}$ provided that $p>4 \mathrm{e}^{2 \Lambda} / \Lambda^{4}$. When we insert reasonable values for α and d, this results in bounds which are more physically useful, and which could probably be improved still more.

Our arguments are for a specific problem but can be extended to other models such as self-averaging in a randomly coloured self-avoiding walk model of localization of a copolymer at an interface between two immiscible solvents (Martin et al 2000).

Acknowledgments

The authors would like to thank Neal Madras for helpful discussions and advice and especially for his suggestion of the idea behind lemma 6 . The authors would also like to thank Andrew Rechnitzer for helpful comments on an earlier version of this paper. This research was supported, in part, by NSERC of Canada.

References

Brout R 1959 Phys. Rev. 115 824-35
Chuang J, Grosberg A and Kardar M 2001 Phys. Rev. Lett. 87078104
Derrida B and Hilhorst H 1981 J. Phys. C: Solid State Phys. 14 L539-44
Hammersley J M and Morton K W 1954 J. R. Stat. Soc. B 16 23-38
Hammersley J M and Welsh D J A 1962 Q. J. Math. Oxford 13 108-10
Hille E 1948 Functional Analysis and Semi-Groups (Am. Math. Soc. Coll. Publ. 31) (New York: American Mathematical Society)
Janse van Rensburg E J, Orlandini E, Tesi M C and Whittington S G 2001 J. Phys. A: Math. Gen. 34 L37-44
Martin R, Causo M S and Whittington S G 2000 J. Phys. A: Math. Gen. 33 7903-18
Moran P A P 1968 An Introduction to Probability Theory (Oxford: Clarendon)
Naidenov A and Nechaev S 2001 J. Phys. A: Math. Gen. 34 5625-34
Orlandini E, Tesi M C and Whittington S G 1999 J. Phys. A: Math. Gen. 32 469-77
Orlandini E, Tesi M C and Whittington S G 2000 J. Phys. A: Math. Gen. 33 259-66
Sourlas N 1987 Europhys. Lett. 3 1007-11
Tesi M C, Janse van Rensburg E J, Orlandini E and Whittington S G 1996 J. Phys. A: Math. Gen. 29 2451-63
van Enter A C D and van Hemmen J L 1983 J. Stat. Phys. 141-52
van Hemmen J L and Palmer R G 1982 J. Phys. A: Math. Gen. 15 3881-90
You S and Janse van Rensburg E J 2000 J. Phys. A: Math. Gen. 33 1171-86

