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Abstract
We investigate the extent of thermodynamic self-averaging in a coloured self-
avoiding walk model of finite random copolymer adsorption. We derive a bound
on the extent of self-averaging as a function of the length of the self-avoiding
walk.

PACS numbers: 05.40.Fb, 05.70.Ce, 82.35.Jk

1. Introduction

Quenched random systems such as dilute magnets and copolymers have been studied since the
pioneering work of Brout (1959). An important question which arises is the extent to which
properties of the system depend on the particular realization of the quenched random variables.
For instance, in the case of random copolymers the sequence of monomers is determined by
some random process but this sequence is then fixed in that molecule. To what extent do the
properties of the molecule depend on the particular sequence of comonomers? If the polymer
has n monomers, then the system is said to be thermodynamically self-averaging if the free
energy is equal to the quenched average free energy for almost all comonomer sequences, in
the infinite-n limit.

Thermodynamic self-averaging has been proved for a number of model systems including
a random magnet with short-range (van Hemmen and Palmer 1982) and long-range interactions
(van Enter and van Hemmen 1983), self-avoiding walk models of random copolymer adsorption
(Orlandini et al 1999) and localization (Martin et al 2000), a lattice tree model of branched
random copolymer adsorption (You and Janse van Rensburg 2000) and some simplified models
of randomly self-interacting copolymers (Orlandini et al 2000, Janse van Rensburg et al 2001).
However, it is known that correlation functions are not self-averaging in some random spin
problems (Derrida and Hilhorst 1981, Sourlas 1987), so self-averaging is not a trivial property.

The methods which have been used to prove thermodynamic self-averaging say little about
the extent of self-averaging for finite systems. For spin systems van Hemmen and Palmer
(1982) gave a large deviation result for finite systems and, more recently, self-averaging in
finite random copolymers has been investigated numerically by Chuang et al (2001) and by
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Naidenov and Nechaev (2001). They examined the dependence of thermodynamic functions
on the comonomer sequence, as a function of system size, and investigated the extent of self-
averaging for small n. The purpose of this paper is to supply some rigorous results about the
question. We shall work in the context of a self-avoiding walk model of random copolymer
adsorption.

2. Definitions and statement of results

We shall focus on self-avoiding walks on the d-dimensional hypercubic lattice, Z
d and write

(x, y, . . . , z) for the coordinates of a vertex of Z
d . Let cn be the number of distinct n-edge

self-avoiding walks on Z
d , starting at the origin. The connective constant κd of Z

d is given by

κd = lim
n→∞ n−1 log cn (2.1)

(Hammersley and Morton 1954), and it is known that cn = eκdn+O(
√
n) (Hammersley and Welsh

1962). We define a positive walk to be a self-avoiding walk with n edges on Z
d , which starts

at the origin and is confined to the half-space z � 0, but we shall often consider translates of a
positive walk in the z = 0 plane. We write (xi, yi, . . . , zi) for the coordinates of the ith vertex,
i = 0, 1, . . . , n, so that z0 = 0 and zi � 0 for all i > 0. The zeroth vertex is uncoloured
and the remaining vertices of the walk are coloured independently and uniformly by a random
variable belonging to a probability space Y . A sequence χ = χ1, χ2, . . . , χn of n colours can
be sampled from the product spaceX = Y ×Y ×· · ·×Y . In fact we shall consider colourings
by only two coloursA andB, but this can easily be generalized to cases with any finite number
of colours.

Let c+
n(v|χ) be the number of positive walks with n edges, with vertices 1, 2, . . . , n

coloured χ1, χ2, . . . , χn ≡ χ , having v vertices coloured A in the surface z = 0. We define
the partition function

Z+
n(α|χ) =

∑
v

c+
n(v|χ)eαv, (2.2)

and the reduced free energy

κn(α|χ) = n−1 logZ+
n(α|χ). (2.3)

We define an n-edge loop to be a positive walk with n edges which satisfies the inequalities

0 = x0 < xi � xn, 0 < i � n, (2.4)

and the condition

0 = z0 = zn � zi, 0 � i � n. (2.5)

We write ln(v|χ) for the number of loops with n edges and colouring χ , having v vertices
coloured A in the plane z = 0. Define the partition function

Ln(α|χ) =
∑
v

ln(v|χ)eαv. (2.6)

Let chn(v|χ) be the number of n-edge self-avoiding walks, confined to the half-space z � 0,
having initial vertex with coordinates (0, 0, . . . , 0, h) (i.e. with z0 = h), having colouring
χ and having v vertices coloured A in z = 0. Notice that c0

n(v|χ) ≡ c+
n(v|χ). Define the

corresponding partition function

Zhn(α|χ) =
∑
v

chn(v|χ)eαv, (2.7)
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and let

Z∗
n(α|χ) = max

h
Zhn(α|χ). (2.8)

Orlandini et al (1999) proved the existence of the quenched average free energy

lim
n→∞〈κn(α|χ)〉 ≡ κ̄(α), (2.9)

where the angular brackets denote an average over colourings χ , and that

lim
n→∞〈n−1 logLn(α|χ)〉 = lim

n→∞〈n−1 logZ∗
n(α|χ)〉 = κ̄(α). (2.10)

Our main result is a bound on the width of the distribution of the free energy κn(α|χ). We
state this in the following theorem.

Theorem 1. For any α < ∞ there exists K = K(α, d) < ∞, such that for any ε > 0, the
following inequality holds with probability exceeding

(
1 − 2K/�√n�):

|κn(α|χ)− 〈κn(α|χ)〉| � O(n− 1
4 +ε). (2.11)

The proof is by a series of lemmas, and is given in the next section.

3. Proof of results

The general approach is to divide an n-edge walk into a set of p subwalks each of length m
and derive upper and lower bounds on logZ+

n(α|χ) in terms of the averages of logLm(α|χ)
and logZ∗

m(α|χ), with correction terms coming from the distributions of logLm(α|χ) and
logZ∗

m(α|χ). The main tool is an application of Chebyshev’s inequality (see for instance Moran
1968). The remaining problem is to relate the averages 〈logLm(α|χ)〉 and 〈logZ∗

m(α|χ)〉 to
〈logZ+

m(α|χ)〉. We first prove several lemmas which address the second problem. The first
lemma gives an upper bound on the quenched average free energy for loops.

Lemma 1. For all α < ∞ the quenched average free energy for loops is bounded above by
the limiting quenched average free energy. I.e. for any n > 0,

〈n−1 logLn(α|χ)〉 � κ̄(α). (3.1)

Proof. Fix α < ∞. Two loops can be concatenated to form a loop by identifying the last
vertex of one loop with the first vertex of the other loop. Since the first vertex of a loop is not
coloured, the common vertex inherits the colour of the last vertex of the first loop. This gives
the inequality

Lm+n(α|χ) � Lm(α|χ1)Ln(α|χ2) (3.2)

where the colouring χ is the concatenation of the two colourings χ1 and χ2. Taking logarithms
and averaging over the colourings gives

〈logLm+n(α|χ)〉 � 〈logLm(α|χ1)〉 + 〈logLn(α|χ2)〉 (3.3)

so that 〈logLn(α|χ)〉 is a superadditive function. Since

〈n−1 logLn(α|χ)〉 � max[log(2d), log(2d) + α] < ∞ (3.4)

we have (Hille 1948)

sup
n>0

〈n−1 logLn(α|χ)〉 = lim
n→∞〈n−1 logLn(α|χ)〉 (3.5)

and this limit is known to be equal to κ̄(α) (Orlandini et al 1999). �
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Lemma 2. For all α < ∞ and for any n > 0,

〈n−1 logZ∗
n(α|χ)〉 � κ̄(α). (3.6)

Proof. Fix α < ∞. By cutting walks with m + n edges into two subwalks with m and n edges
respectively we obtain the inequality

Z∗
m+n(α|χ) � Z∗

m(α|χ1)Z
∗
n(α|χ2) (3.7)

where the colourings χ1 and χ2 of the two subwalks are determined by the colouring χ . Taking
logarithms and averaging over χ shows that 〈logZ∗

n(α|χ)〉 is a subadditive function. Since

〈n−1 logZ∗
n(α|χ)〉 � log d

2
(3.8)

for n � 2, it follows (Hille 1948) that

inf
n>0

〈n−1 logZ∗
n(α|χ)〉 = lim

n→∞〈n−1 logZ∗
n(α|χ)〉 (3.9)

and the result then follows since limn→∞〈n−1 logZ∗
n(α|χ)〉 = κ̄(α) (Orlandini et al 1999). �

The next lemma is essentially a sharpened version of a result due to Orlandini et al (1999)
and uses a construction similar to theirs.

Lemma 3. For all α < 0

Z∗
n(α|χ) � cn, (3.10)

and for 0 � α < ∞
Z∗
n(α|χ) � Ln+2k(α|χ ′)eO(

√
n) (3.11)

for some colouring χ ′ which is an extension of χ , and for some k which is independent of n,
α and the colouring χ .

Proof. If α < 0 the interaction with the surface is repulsive, and every walk contributing to
Zhn(α|χ) is a self-avoiding walk so that Z∗

n(α|χ) � cn. Now suppose that α � 0. Consider a
walk confined to the half-space z � 0, with at least one vertex in z = 0. The strategy will be
to operate on both ends of the walk to convert the walk into a loop.

First, treat the case when at least one of zn or z0 is zero. For each of these, x-unfold the
walk and attach to the end or beginning of the resulting walk a new four-edge walk which
lies in the plane z = 0, and is oriented in the x-direction in such a manner that the walk
remains x-unfolded. Thus each end of the original walk lying in the plane z = 0 contributes
an additional four edges and four vertices in the plane z = 0.

Second, we treat any end of the walk that does not lie in z = 0. It suffices to describe
the construction for one end of the walk, since the procedure may then be repeated mutatis
mutandis, at the other end, as necessary, to form the loop. We suppose that zn > 0. Let m
be the last vertex in the plane z = 0. Then vertex m − 1 will also be in z = 0. This is true
because either end of the walk lying in z = 0 has already been treated, above. Disconnect the
walk into three subwalks, ω1 from vertex 0 to vertexm−1, ω2 being the single edge (in z = 0)
from vertexm− 1 to vertexm, and ω3 from vertexm to vertex n. Unfold ω1 in the x-direction
to form a walk ω4 with m− 1 edges so that xm−1 � xi for all i � m− 1. Reorient the single
edge ω2 to form an edge ω̃2 in the positive x-direction, lying in the z = 0 plane. Unfold ω3 in
the x-direction to form ω5 with xm � xj � xn for allm � j � n. Unfold ω5 in the z-direction
to form ω6 with zn � zj � zm = 0 for all m � j � n. Define z∗ = 1 + zn/2 if zn is even, and
z∗ = (1 + zn)/2 if zn is odd. Let r be the last vertex in ω6 in the plane z = z∗. Disconnect ω6

at vertex r to form two walks, ω7 from vertex m to vertex r and ω8 from vertex r to vertex n.
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Note that ω8 = ∅ if and only if zn ∈ {1, 2}, in which case r = n. This does not affect the
proof. Unfold ω7 in the x-direction so that xr � xj � xm, m � j � r , to form ω9. Unfold ω8

in the x-direction so that xr � xj � xn, r � j � n, and then reflect this unfolded walk in the
plane z = z∗ to form ω10. We now reconnect these subwalks in the following order: ω4, ω̃2,
ω9, a single edge in the positive x-direction at height z = z∗, and finally ω10 (empty or not).
The z-coordinate of the final vertex of the resulting new walk is now equal to either 1 or 2.
Now add one or two edges in the negative z-direction so that the final vertex is in the plane
z = 0, and then add two or one edges in the positive x-direction. The total number of edges
which has been added is four, and the total number of new vertices in the plane z = 0 is either
three or two.

Once both ends of the walk have been treated in the manner and order described above, the
resulting object is a loop with eight additional edges and at most eight extra vertices in z = 0.
Now, relabel the vertices so that the relabelling χ ′ of the loop is any fixed labelling of the four
vertices (numbered 1 to 4), followed by the labelling χ of the vertices numbered 5 to n + 4,
followed by any fixed labelling of vertices n+ 5 to n+ 8. We note that the unfolding operations
only contribute a factor of eO(

√
n). Also, because of the way χ has been shifted to obtain χ ′, we

observe that the original energy contributions remain unchanged. Thus, since α is fixed and
no more than eight new vertices may affect the energy contributions, these changes in energy
can be incorporated into the eO(

√
n) term. If the original walk has no vertices in z = 0 we have

a contribution from self-avoiding walks, no bigger than cn. But it follows from a result of Tesi
et al (1996) that cn � Ln(α|χ)eO(

√
n) � Ln+8(α|χ ′)eO(

√
n) so that

Z∗
n(α|χ) � cn + Ln+8(α|χ ′)eO(

√
n) � Ln+8(α|χ ′)eO(

√
n). (3.12)

This completes the proof, with k = 4. �

Lemma 4. For all α < ∞
〈m−1 logZ∗

m(α|χ)〉 � κ̄(α) + O(m−1/2). (3.13)

Proof. First consider α � 0. Then by lemma 3 we have

Z∗
m(α|χ) � eO(

√
m)Lm+2k(α|χ ′). (3.14)

Taking logarithms, dividing by m and averaging over colourings gives

〈m−1 logZ∗
m(α|χ)〉 � m + 2k

m
〈(m + 2k)−1 logLm+2k(α|χ ′)〉 + O(m−1/2)

� κ̄(α) + O(m−1/2), (3.15)

where we have made use of the fact that 〈m−1 logLm(α|χ)〉 is bounded above by κ̄(α)

(lemma 1). For α < 0, Z∗
m(α|χ) � cm, by lemma 3, and cm = eκdm+O(

√
m) (Hammersley

and Welsh 1962) so that

〈m−1 logZ∗
m(α|χ)〉 � κd + O(m−1/2) = κ̄(α) + O(m−1/2), (3.16)

since κ̄(α) = κ̄(0) = κd for all α � 0 (Orlandini et al 1999). �

The next lemma gives a lower bound on the quenched average free energy for loops.

Lemma 5. For all α < ∞
〈m−1 logLm(α|χ)〉 � κ̄(α)− O(m−1/2). (3.17)



3208 E W James and S G Whittington

Proof. For α � 0 the result is immediate since Lm(α|χ) = cmeO(
√
m) (Tesi et al 1996) and

κ̄(α) = κd (Orlandini et al 1999). For α � 0, using lemma 3,

Lm(α|χ) � Z∗
m−2k(α|χ ′)eO(

√
m), (3.18)

where χ ′ is a suitable truncation of the colouring χ . Taking logarithms, dividing by m,
averaging over the colourings and using lemma 2 gives the required result. �

We now turn to the basic ingredient in the proof of theorem 1, which is an application of
Chebyshev’s inequality to upper and lower bounds on n−1 logZ+

n(α|χ).
Lemma 6. Suppose thatX1, X2, X3, . . . , is a sequence of independent, identically distributed
random variables, with mean zero, such that ∀j |Xj | � #, for some fixed constant # < ∞.
Form the pth sum Sp = ∑p

j=1 Xj . Then there is a constant K = K(#) depending only on #,
such that

Prob

{∣∣∣∣Spp
∣∣∣∣ � logp√

p

}
� K

p
. (3.19)

Proof. Let ap = √
p logp. Then, we wish to find an upper bound on the probability

Prob{|Sp| � ap}. To do this, we first consider the following:

Prob{Sp � ap} = Prob
{√

eSp/
√
p �

√
eap/

√
p
}

� 〈eSp/√p〉
eap/

√
p

= 〈eSp/√p〉
p

, (3.20)

where the upper bound has been obtained through an application of Chebyshev’s inequality.
By assumption, there is a # < ∞, so that |Xj | � #, for each j . Using this, and the fact that
X1, X2, . . . , are i.i.d. with 〈Xj 〉 = 0, we obtain the following upper bound:

〈eSp/√p〉 = 〈
e
(1/

√
p)

∑p
j=1 Xj 〉 =

〈
p∏
j=1

eXj/
√
p

〉
= 〈eX1/

√
p〉p

=
(

1 +
〈X1〉
p1/2

+
〈X1

2〉
2! p

+
〈X1

3〉
3! p3/2

+
〈X1

4〉
4! p2

+ · · ·
)p

=
(

1 +
1

p

( 〈X1
2〉

2!
+

〈X1
3〉

3! p1/2
+

〈X1
4〉

4! p1
+ · · ·

))p

�
(

1 +
1

p

(
#2

2!
+
#3

3!
+
#4

4!
+ · · ·

))p

�
(

1 +
B

p

)p

� eB, (3.21)

where B = e# will do the job. By exactly the same argument, we obtain

Prob{Sp � −ap} = Prob{−Sp � ap}

= 〈e−Sp/√p〉
p

� eB

p
. (3.22)

Combining the results of equations (3.21) and (3.22), we have

Prob{|Sp| � ap} = Prob{Sp � ap or Sp � −ap}
= Prob{Sp � ap} + Prob{Sp � −ap}

� 2eB

p
, (3.23)

and the lemma is proved, with K = 2eB , where B = e#. �
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Lemma 7. Fix m � 4 and write n = mp + q, 0 � q < m. For all α < ∞ there is a constant
K = K(α, d) < ∞, depending only on α and the dimension d, such that the following
inequality holds with probability exceeding 1 − K

p
:

n−1 logZ+
n(α|χ) � 1

1 + q/mp

[
〈m−1 logLm(α|χ)〉 − logp√

p

]
+ min[0, 3α/n]. (3.24)

Proof. Fix m � 4 and write n = mp + q, 0 � q < m. Fix α < ∞. By concatenating p loops
each of length m together with an additional loop of length q we have the lower bound

Z+
n(α|χ) �

[ p∏
j=1

Lm(α|χj )
]

× Lq(α|χp+1), (3.25)

where we define L0 ≡ 1 and where the colourings χ1, . . . , χp+1 of the p + 1 loops are
determined by the colouring χ . Taking logarithms, dividing by n and using the fact that
Lq(α|χ) � min[1, e3α], we have

n−1 logZ+
n(α|χ) �

(
mp

mp + q

)
p−1

p∑
j=1

m−1 logLm(α|χj ) + min[0, 3α/n]. (3.26)

Choosing the i.i.d., mean zero, random variables X1, X2, . . . , of lemma 6 to be defined by

Xj = m−1 logLm(α|χj )− 〈m−1 logLm(α|χj )〉, (3.27)

we note that (for m big enough) |Xj | � # = 2 max[log 2d, α + log 2d]. Therefore, setting
K = 2eB , with B = e#, lemma 6 yields

p−1
p∑
j=1

m−1 logLm(α|χj ) � 〈m−1 logLm(α|χ)〉 − logp√
p
, (3.28)

with probability exceeding 1 − K
p

, and the lemma then follows. �
Lemma 8. Fix m � 4 and write n = mp + q with 0 � q < m. For all α < ∞, there is a
constant K = K(α, d) < ∞, depending only on α and dimension d, such that the following
inequality holds with probability exceeding 1 − K

p
:

n−1 logZ+
n(α|χ) � 〈m−1 logZ∗

m(α|χ)〉 +
logp√
p

+
m

n
max[log 2d, α + log 2d]. (3.29)

Proof. By dividing a walk of length n into p subwalks of length m and a final subwalk of
length q, 0 � q < m, we have the inequality

Z+
n(α|χ) �

[ p∏
j=1

Z∗
m(α|χj )

]
× Z∗

q(α|χp+1) (3.30)

where we define Z∗
0 ≡ 1 and where the colourings χ1, . . . , χp+1 of the p + 1 subwalks are

determined by the colouring χ . Taking logarithms, dividing by n and using the fact that
Z∗
q(α|χp+1) � max[(2d)m, (2d)meαm], we obtain the bound

n−1 logZ+
n(α|χ) � p−1

p∑
j=1

m−1 logZ∗
m(α|χj ) +mn−1 max[log 2d, α + log 2d]. (3.31)

Again, we use lemma 6, this time choosing the i.i.d., mean zero random variables X1, X2, . . .

to be defined by

Xj = m−1 logZ∗
m(α|χ)− 〈m−1 logZ∗

m(α|χ)〉, (3.32)
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and we note that |Xj | � # = 2 max[log 2d, α + log 2d]. Therefore, setting K = 2eB , with
B = e#, lemma 6 yields

n−1 logZ+
n(α|χ) � 〈m−1 logZ∗

m(α|χ)〉 + (m/n)max[log 2d, α + log 2d] +
logp√
p

(3.33)

with probability exceeding 1 −K/p, which completes the proof. �

Lemma 9. Fix α < ∞. Then there is a constant K = K(α, d) < ∞, such that ∀ε > 0 the
following inequality holds with probability exceeding

(
1 − 2K/�√n�):

|n−1 logZ+
n(α|χ)− κ̄(α)| � O(n− 1

4 +ε). (3.34)

Proof. From lemmas 5 and 7, for sufficiently large m there is a constant K = K(α, d) < ∞,
such that for any ε > 0 the following inequality holds with probability exceeding 1 −K/p:

n−1 logZ+
n(α|χ) � 1

1 + (q/mp)

[
κ̄(α)− O(m−1/2)− logp√

p

]
+ min[0, 3α/n]

= (1 − O(p−1))[κ̄(α)− O(m−1/2)− O(p− 1
2 +2ε)] + O(p−1)

= κ̄(α)− O(m−1/2)− O(p− 1
2 +2ε). (3.35)

This is most effective when we let p ∼ m ∼ √
n. We therefore take m = �√n�, so that

p � �√n� and we have the following inequality, with probability exceeding
(
1 −K/�√n�):

n−1 logZ+
n(α|χ) � κ̄(α)− O(n− 1

4 +ε). (3.36)

Combining lemmas 4 and 8 yields, for the same K , the following inequality, with probability
exceeding

(
1 −K/�√n�):

n−1 logZ+
n(α|χ) � κ̄(α) + O(n− 1

4 +ε). (3.37)

The lemma is proved by combining equations (3.36) and (3.37). �
Finally we return to theorem 1. Because a loop is a positive walk, and a positive walk is

a *-walk, it is not difficult to show that

〈n−1 logLn(α|χ)〉 � 〈n−1 logZ+
n(α|χ)〉 � 〈n−1 logZ∗

n(α|χ)〉. (3.38)

In addition, lemmas 1 and 5 yield 〈n−1 logLn(α|χ)〉 = κ̄(α)− O(n−1/2), and lemmas 2 and 4
yield 〈n−1 logZ∗

n(α|χ)〉 = κ̄(α) + O(n−1/2). Combining these last two equations with (3.38)
gives

κ̄(α)− O(n−1/2) � 〈n−1 logZ+
n(α|χ)〉 � κ̄(α) + O(n−1/2). (3.39)

Theorem 1 follows from an application of the triangle inequality, using equation (3.34) of
lemma 9, and equation (3.39).

4. Discussion

We have considered the extent of thermodynamic self-averaging in an n-edge self-avoiding
walk model of random copolymer adsorption. Our main result (theorem 1) is that the free
energy of the system with a randomly chosen colouring of the vertices differs from its
expectation over colourings by no more than a term O(n−1/4+ε) with high probability. In
addition we showed (lemma 9) that the free energy with n edges and a randomly chosen
colourings differs from the limiting quenched average free energy by no more than O(n−1/4+ε)

with high probability. The reason that these two error terms are of the same order is that the
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quenched average free energy converges to the limiting quenched average free energy even
more rapidly, in fact at least as rapidly as O(n−1/2).

These results are for large values of n but one might ask, from the physical point of view,
how large does n have to be? In order for (3.24) and (3.29) to be useful, p must be large
compared with K , and the bound which we give on K , i.e. K < 2ee# is very weak. With a
little more work this can be improved to K < 2e#

2
provided that p > 4e2#/#4. When we

insert reasonable values for α and d , this results in bounds which are more physically useful,
and which could probably be improved still more.

Our arguments are for a specific problem but can be extended to other models such as
self-averaging in a randomly coloured self-avoiding walk model of localization of a copolymer
at an interface between two immiscible solvents (Martin et al 2000).
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